How Do Alloying Elements Behave at the Grain Boundary?
On an atomic scale, the area of a material in which different crystalline structures come together is known as a grain boundary. In this video, LIAM HUBER investigates the behavior of alloying elements at grain boundaries. Identifying impracticalities in quantum mechanical simulation, Huber uses classical simulation to study how atoms behave at the grain boundary and how this influences the properties of that grain boundary. Huber also employs machine learning to make predictions and to extend the insights provided by the study. Going forward the research will seek to further explain the influence of a range of variations including, most significantly, temperature.
DOI:
https://doi.org/10.21036/LTPUB10936Max-Planck-Institut für Eisenforschung
Novel alloys for automotive lightweight design and airplane turbines, materials for sustainable energy conversion and storage, and the development of big data and machine learning methods – these are just a few examples of the research areas that are being investigated by the scientists of the Max-Planck-Institut für Eisenforschung. The team of engineers, material scientists, physicists, and chemists develops tailored materials and methods for mobility, energy, infrastructure, and information. To this end, the researchers study complex materials with atomic precision under real environmental conditions.

Original Publication
A Machine Learning Approach to Model Solute Grain Boundary Segregation
Liam Huber
,Raheleh Hadian
,Blazej Grabowski
,Jörg Neugebauer
Published in 2018